
Correct Me If I’m Wrong: Using Non-Experts to
Repair Reinforcement Learning Policies

Sanne van Waveren, Christian Pek, Jana Tumova, and Iolanda Leite
Division of Robotics, Perception and Learning

KTH Royal Institute of Technology
Stockholm, Sweden

{sannevw,pek2,tumova,iolanda}@kth.se

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Pre-print of accepted manuscript.
To appear at the 17th ACM/IEEE Int. Conf. on Human-Robot Interaction (HRI), 2022.

Abstract—Reinforcement learning has shown great potential
for learning sequential decision-making tasks. Yet, it is difficult
to anticipate all possible real-world scenarios during training,
causing robots to inevitably fail in the long run. Many of these
failures are due to variations in the robot’s environment. Usually
experts are called to correct the robot’s behavior; however, some
of these failures do not necessarily require an expert to solve
them. In this work, we query non-experts online for help and
explore 1) if/how non-experts can provide feedback to the robot
after a failure and 2) how the robot can use this feedback to avoid
such failures in the future by generating shields that restrict or
correct its high-level actions. We demonstrate our approach on
common daily scenarios of a simulated kitchen robot. The results
indicate that non-experts can indeed understand and repair robot
failures. Our generated shields accelerate learning and improve
data-efficiency during retraining.

Index Terms—robot failure; policy repair; non-experts;
shielded reinforcement learning

I. INTRODUCTION

When we deploy learning-based robots in the real world,
their policy will inevitably fail at some point, e.g., due to
changes in the environment, such as additional or missing
objects [1], [2]. Typically, such failures require costly expert
intervention, substantial time or data to retrain the policy.
Yet, certain failures, especially when they happen in everyday
context, are also understandable by non-experts (NEs).

In this paper, we ask NEs to identify and repair the robot’s
policy by correcting its high-level actions. Specifically, we ask
NE input for three types of failure corrections. Let us consider
a cooking task in which the robot has to assemble and deliver
a sandwich as an example (see Fig. 1):

(1) Action refinement: The robot learned to fetch an onion
slice, which is no longer available during deployment. To
correct this failure, the robot needs to refine its action,
e.g., fetch and chop the whole onion.

(2) Alternative item: The robot learned to fetch the ketchup
for the sandwich but fails during deployment because it

This work was financially supported by the Swedish Research Council (reg.
number 2017-05189 and 2017-05102), the Swedish Foundation for Strategic
Research (SSF FFL18-0199), the Vinnova Competence Center for Trustwor-
thy Edge Computing Systems and Applications at KTH Royal Institute of
Technology and by the Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

1

2

3

delivery

agent

Fig. 1. The three failure corrections considered in this work: (1) action
refinement: the onion is not yet cut and the robot needs to cut it; (2) alternative
item: the ketchup is empty and the robot needs to find a replacement; (3)
forbidden action: the robot needs to avoid getting stuck on the carpet.

ran out of ketchup. The robot needs to use an alternative
item, e.g., it could use mayonnaise instead of ketchup.

(3) Forbidden action: The robot learned to move on linoleum
floor tiles, but in the deployment environment, it gets stuck
on a carpet. The robot should treat moving to the carpet
at all times as a forbidden action.

While many situations can already be anticipated during
development, it becomes tedious, or even impossible, to an-
ticipate all possible failures [3]. For the failure correction
types described above, we can update the robot’s policy by
incorporating simple rules or domain knowledge that even
people who do not necessarily have programming experience
(NEs) could provide. We focus on crowdsourcing to alleviate
the need for a teacher to constantly monitor the robot.

This work proposes a policy repair approach in which a
robot queries for NE input only after it detects a failure state.
In an online study, we explore if/how NEs can provide such
corrective input. We evaluate the efficiency of our approach
through a series of experiments, in which we construct shields
from ground-truth and incorrect NE feedback. We show for the
first time that shielded RL can be used to repair robot failures.

II. RELATED WORK

Robots need the ability to recover from failure states without
expert intervention. We review work that leverages NE input
for robot learning and approaches to enforce robot behaviors.

A. Learning from NE Feedback

Human feedback can enable agents to solve sequential
decision-making tasks for which the rewards are not easily
defined [4]. Prior work used NE input to author [5], [6] or
interactively shape robot behaviors [7], accelerate the learning,
guide exploration, and prevent undesired actions [8]–[11].

Common approaches to learn from human teachers are
Learning from Demonstration (LfD) [12], [13] and interactive
RL (IRL) [8], [9], [14], [15]. While LfD is typically used to
teach new skills through kinesthetic guidance, IRL can solve
sequential decision-making tasks, encoding human feedback
as numeric rewards, correction of actions, and preferences.

Human feedback, e.g., through guidance and positive re-
wards [8], can improve learning efficiency and make explo-
ration more robust [9]. Such explicit rewards are used incor-
porate domain knowledge into RL [15], [16]. Alternatively,
teacher intervention can serve as implicit negative rewards,
indicating that actions are undesirable [17], [18].

These works highlight the potential of human feedback in
RL, yet, often require teachers to constantly monitor the entire
training process. We actively query people for input only when
it is really needed, i.e., after a failure occurs. Our approach
leverages NEs during the deployment phase, allowing robots
to learn even after they complete training in a controlled
environment, without constant human supervision.

B. Enforcing Desired Robot Behaviors

Constrained RL (CRL) enforces desired behaviors by re-
stricting the state or action spaces, providing penalty rewards,
or by interfering with the policy update, e.g., through La-
grangian methods [19]–[21]. However, CRL requires technical
expertise and can often not formally ensure that undesired
behaviors are always avoided.

Formal guarantees are crucial for robots’ real-world de-
ployment and trustworthiness [22]. Contrary to CRL, formal
approaches verify whether a system adheres to a given spec-
ification at all times. Specifications define desired behaviors,
e.g., avoiding obstacle collisions or never fetching incorrect
items. Temporal Logics (TLs) are popular specification tools
due to their resemblance to natural language, balancing the
trade-off between rigorousness and simplicity for NEs. TL
specifications can be used to verify system behaviors [23],
[24]. Linear TL (LTL) has been used to verify human-robot
interactions [5], or help agents learn in game environments
[25], [26]. While TL-based approaches are effective, they often
interfere with the RL problem, e.g., by pruning actions and
paths in the RL model [20], potentially limiting exploration.

Rather than directly changing the policy, shielded RL (SRL)
restricts the agent’s actions [27]–[29]. This way, it minimally
interferes with the RL model while still enforcing desired
behaviors. Shields can be constructed from TL specifications
to define a set of constraints, e.g., never move out of reach
of the Wi-Fi router, and to prevent actions that will lead to
specification violations. To date, SRL is primarily used to
enforce safety properties, but not to repair policies in case of
failures. SRL often requires experts to construct specifications

or to turn them into shields, and an automaton with all possible
states for safety checks. We apply shields only to the states
the agent actually visits, reducing computational complexity.

III. CORRECTING FAILURES OF POLICIES

Fig. 2 illustrates the main steps of our policy repair ap-
proach. Initially, an RL agent learns a decision-making task
in a training kitchen environment where it can find all the
required ingredients to make sandwiches. Being deployed in
a target environment, the agent’s policy of high-level actions
may fail, due to changes not seen during training, e.g., it needs
a chopped onion but there is none.

If the agent detects a failure state, it sends the sequence
of performed actions so far (a failure trace) and information
about the environment to NEs for feedback. For instance, the
NEs may suggest that the agent should fetch an onion and
chop it. We use this feedback to generate shields that repair
the policy by either 1) refining actions, 2) choosing alternative
items, or 3) forbidding certain actions. We retrain the agent
with the generated shield to correct the failure.

A. Training the Reinforcement Learning System

We consider the problem of correcting failures of RL agents
in sequential decision-making tasks. In these tasks, the agent
learns a policy π = (a1, a2, . . . , an) of available high-level
actions ai ∈ A that leads the agent from its current state
sI ∈ S to a predefined goal state sG ∈ S . We assume that
if a high-level action is feasible the agent can successfully
execute it. In Fig. 1, the states S correspond to the agent’s
position on the floor tiles and the available set of actions to
moving around the kitchen, i.e., A = {left, right,up,down}.
The transition function δ(si, ai) = si+1 returns the subsequent
state si+1 when applying action ai in state si. Some actions
may require a parameter p ∈ P, e.g., to encode that an action
a is performed on an object p, which we denote with a⟨p⟩. We
assume that the agent is aware of all objects in its environment.

The agent learns an optimal policy π, which maximizes the
cumulative reward, by interacting with a training environment,
and collecting rewards r ∈ R over time, given by the function
R : (s, a) 7→ r. After training, the optimal policy is deployed
on the agent so that it can perform the task in the deployment
environment, e.g., the agent owner’s kitchen.

B. Query NEs to Correct Failures after Deployment

We assume that the agent can detect a failure state sF =
δ(si, ai), e.g., through a failure detection module. The agent
prepares a query Q =

(
sF , (a1, . . . , aF), T

)
to send to

NEs, which consists of the failure state sF , the executed
action sequence (a1, . . . , aF) until the failed action aF , and a
function T that maps the failure state and action sequence into
a human interpretable format. For instance, if the agent fails
to fetch a chopped onion because there are no more chopped
onions (see failure (1) in Fig. 1), the function T maps the
failure state into a visual representation of the environment
(see Fig. 3a), the action sequence into a textual representation
(see Fig. 3b), and creates a failure query (see Fig. 3c). The

agent

state

ac
tio
n

reward

training environment

forbidden
action

alternative
item

1 2 3

action
refinement

shield

Training the reinforcement
learning systemA Use non-experts to correct

failure after deploymentB Generate shield to correct
the failureC

retrain with shield to correct failure

deployment feedback

failure environmenthuman

2

3
1

"If there is no chopped onion,
fetch an onion and chop it"

Fig. 2. Overview of our framework to correct policy failures after deployment using NE feedback. (A) The robot learns to solve its task in a training
environment and is then deployed in a target environment. (B) In the target environment, the robot may encounter failures, e.g., it cannot find chopped onions
(see number 1). We show the sequence of already executed actions and the failure environment to NEs and ask them how the robot could avoid this failure in
the future. (C) From the human feedback we generate a shield that either 1) refines actions (chop an onion if there is no chopped onion), 2) picks alternative
items (use mayonnaise if there is no ketchup any more), or 3) forbids certain actions (never move to a carpeted tile).

I failed to complete my task. I tried
to fetch a chopped onion, but failed.

What could I do to avoid this failure
and complete the task in the future?

(a) Failure environment

I failed to complete my task. I tried
to fetch a chopped onion, but failed.

What could I do to avoid this failure
and complete the task in the future?

I executed the following actions
until the failure:
1) Fetching sliced bread
2) Fetching ketchup
3) Fetching salad slice
4) Fetching chopped onions

The rule to avoid the failure

if

do

not Onion slice

Onion

OnionChop

Fetch

(b) Failure trace

I failed to complete my task. I tried
to fetch a chopped onion, but failed.

What could I do to avoid this failure
and complete the task in the future?

(c) Failure query message

Fig. 3. Example on what a failure query to a NE can look like. Fig. 3a shows a 2D view of the failure scenario. Fig. 3b summarizes the actions that the
agent has executed until the failed action. Fig. 3c shows the failure query message that the agent sends to the NE.

design of T depends on the application and may be obtained
empirically in user studies, which is not this work’s focus.

C. Generating Shields to Correct Failures

We generate shields to 1) refine actions, 2) suggest alterna-
tive items to use, or 3) forbid actions that lead to undesired
behaviors in our kitchen example in Fig. 1.

a) Action refinement: If the agent’s failed action aF can
be corrected by proposing alternative actions, we apply action
refinement. In the chopped onion example (section III-B) NEs
may suggest to chop an onion first, e.g., in natural language
or through a block program (See Fig. 4a and Fig. 4b, respec-
tively). This feedback indicates that the action fetchonionSlice

will result in a failure state when there are no more chopped
onions. We denote a set of desired states that the agent should
stay in as Sdesired := S \ SF , which does not include the set
of failure states SF , e.g., states in which the agent ends up
on the carpeted floor tiles in the coffee example. If the agent
were to leave Sdesired in the next time step, we would correct
the chosen action a with the action(s) suggested by the NE.
The function c(s, a) returns these corrective action(s), e.g.,
choponion instead of fetchonionSlice. We use the refine shield
to retrain the agent and correct action a to avoid the failure:

refines(a) =

{
a, if δ(s, a) ∈ Sdesired
c(s, a), if δ(s, a) ̸∈ Sdesired

(1)

b) Alternative item: The agent gets an alternative item
pa in its action a⟨po⟩, if it fails because it can no longer use
the item po. For instance, the agent may not be able to use
the ketchup (po) if it is empty (see failure (2) in Fig. 2). NEs
may suggest to use an alternative item pa, e.g., mayonnaise,
instead. To avoid the failure, our shield selects an alternative
item pa if the original item po is not in the environment:

alt(a⟨po⟩) =

{
a⟨po⟩, if po in environment
a⟨pa⟩, if po not in environment

(2)

c) Forbidden actions: We remove actions from the set of
actions A when they lead to an undesired state of the agent,
i.e., δ(s, a) ̸∈ Sdesired. For instance, the human may tell the
agent it should avoid the carpet since it gets stuck on it (see
failure (3) in Fig. 1). We denote a set of allowed actions that
the agent can choose from in state s as Aallowed(s), which

I failed to complete my task. I tried
to fetch a chopped onion, but failed.

What could I do to avoid this failure
and complete the task in the future?

I executed the following actions
until the failure:
1) Fetching sliced bread
2) Fetching ketchup
3) Fetching salad slice
4) Fetching chopped onions

The rule to avoid the failure

if

do

not Onion slice

Onion

OnionChop

Fetch

The robot failed because there are no
onion slices any more.
If there are no slices of onion, then
chop an onion.

(a) Natural language feedback

I failed to complete my task. I tried
to fetch a chopped onion, but failed.

What could I do to avoid this failure
and complete the task in the future?

The rule to avoid the failure

if

do

not Onion slice

Onion

OnionChop

Fetch

(b) Block-based feedback

Fig. 4. Examples of open answer and block-based NE feedback.

does not include actions that, if executed, result in undesired
states (e.g., ending up on a carpeted tile):

Aallowed(s) = {a ∈ A | δ(s, a) ∈ Sdesired} (3)

Finally, we retrain the agent and restrict its actions to Aallowed.

D. Algorithm

Alg. 1 summarizes the main steps of our approach. We first
prepare the query Q and ask NEs for feedback. Afterwards, we
add the new shields to our set of shields, which might already
contain shields obtained in previous failures. The variables
∇ref , ∇alt, and ∇all denote the sets of action refinement,
alternative item, and forbidden action shields, respectively.
With the updated set of shields, we retrain the policy to ensure
its optimality even after applying corrections. We obtain a
desired action from the shielded set of actions in Line 8 and
modify it with other shields if necessary in Line 9. This action
is executed and the agent retrieves its next state and reward.

IV. EVALUATION OF POLICY CORRECTION

We evaluate the efficiency of our policy repair approach in
three experiments. We describe our general RL setup, analysis
plan, implementation, and results of these three experiments.

A. Reinforcement Learning Setup

Similar to [8], [30], we use the popular tabular Q-
learning, allowing us to analyze how the policy considers our
shields. We showcase our results in an adaptation of the 2D
Overcooked-AI environment [31]. The videos of our experi-
ments can be found in the supplementary material, our code
is available at https://github.com/Sannevw/correctmehri2022.

In the action refinement and alternative item experiments,
the objects are placed in a ring in the 3x3 grid environment
and the agent is located in the center (see Fig. 5a and Fig. 6a).
The agent can reach each location/item by rotating around its
axis, starting in orientation 2 and each rotation in-/decreases

Algorithm 1 Correcting failures using NEs
Input: policy π, failure state sF , trace (a1, . . . , aF), mapping
function T , shields (∇ref ,∇alt,∇all)

1: // obtain feedback to correct failure
2: Q← (sF , (a1, . . . , aF), T)
3: F ← queryHumanFeedback(Q)
4: (∇ref ,∇alt,∇all)← updateShields(F)
5: // retrain policy with shields
6: i← 1
7: while not converged do
8: ai ← getAction(si,∇all)
9: ai ← shieldAction(si, ai,∇ref ,∇alt)

10: si+1, ri ← env.Step(ai)
11: πc ← trainPolicy(si, ai, ri, si+1)
12: if Done then
13: si ←env.Reset()
14: i← i+ 1

Return: corrected policy πc

it by one. In the salad experiment, sliced objects and the
plate are placed at orientation 3 on the counter south of the
agent, while non-sliced ingredients are placed at 2. In the cake
example, all ingredients are placed at orientation 2. The agent
can see and reach all objects in the kitchen. For the forbidden
action experiment, we use a 4x5 grid world in which the
agent can move freely (see Fig. 7a). For all tasks, we provide
a step reward of −0.04, to favor shorter sequences. When
action refinement is applied, we give one step cost even if the
replacement consists of a sequence of actions.

B. Analysis Plan

We evaluate how well our shielded RL can recover from
failures as compared to traditional RL when we allow little
random exploration during retraining (ϵ = 0.1) with the aim to
repair policies without extensive retraining. We expect that by
retraining with a shield from a correct NE feedback (ground-
truth) obtained in an online study as described in Sec. V, the
agent can learn a corrected policy more efficiently, which is
beneficial in tasks with expensive data collection using a real
robot or in computationally expensive simulations. The focus
of this work is a proof-of-concept; refining the RL problem
and (hyper)-parameters is left to future work. We also create
shields from incorrect open answers (OAs) to gain insights
into their effect on the failure recovery. For each experiment,
we obtained only one incorrect OA in our study that contained
actions available to the robot (e.g., fetch) and hence, could be
implemented as a shield. We report the OA we used for the
incorrect shield in each experiment in the following sections
and in the supplementary material. OAs success and error rates
are reported in Sec. V-D and shown in Fig. 9.

C. Make a Salad - Action Refinement

1) Problem Representation: The agent’s goal is to assemble
and deliver a salad, which consists of 1 tomato slice and
1 lettuce slice, served on 1 plate (see Fig. 5a). The actions
are A = {turncw, turnccw, fetch<p>, chop<p>,deliver<p>},
where cw and ccw denote turning clockwise and coun-
terclockwise, respectively, and p is an object. The actions
fetch<p>, chop<p>,deliver<p> involve multiple substeps, but
are counted as single timestep actions, e.g., chop<tomato>

takes the tomato from the counter, chops it, and places it on
the counter again. The state includes the agent’s orientation,
the location of each item (Shelf, Counter, or Delivery), and
the ingredients’ state (sliced or not). Correct deliveries are
rewarded with r = +1 and incorrect deliveries with r = −1.

2) Failure: The tomato slice is no longer available in the
deployment environment (see Fig. 5b) and the agent fails when
executing fetch<tomatoSlice>. To resolve the failure, the agent
needs to fetch a whole tomato and chop it.

3) Results: Fig. 5c shows the rewards when retraining the
policy with our shield, which refines the fetch<tomatoSlice>

action by chopping a tomato when there is no slice, against
the rewards gathered without a shield, and an incorrect shield.
Our approach converges 30% faster on average and obtains
less negative rewards (i.e., undesired outcomes) than without

https://github.com/Sannevw/correctmehri2022

agent
delivery

lettuce
slice

tomato

tomato
slice

cutboard

plate

1
2 3

4

5

6

7

0

(a) Training environment. Numbers indicate
the agent’s orientations.

agent

cutboard

lettuce
slice

delivery

tomato

plate

(b) Deployment environment.

average
episode

converged

0 20 40 60 80 100
episodes

−2

−1

0

av
er

ag
e

to
ta

lr
ew

ar
d

shielded
without
incorrect

(c) Rewards with and without shielding.

Fig. 5. Action refinement: The agent needs to make a salad by fetching a
tomato slice, a lettuce slice, and a plate from the shelf (dark brown), and
deliver the dish from the counter (light brown) to the delivery. Fig. 5a and
Fig. 5b depict the training and deployment environment, respectively. During
deployment, the tomato slice is no longer readily available and the agent needs
to refine its action of fetching a tomato slice to fetching a fresh tomato and
chopping it into a slice. Fig. 5c shows the rewards of retraining the policy
with correct, with incorrect, and without a shield to correct the failure.

shield. The incorrect shield, corresponding to open OA 13 in
Fig. 2 in the supplementary material, refines the action by
fetching a plate and then fetching a tomato slice. When the
agent tries to fetch a tomato slice, it fails again, resulting in an
infinite loop of corrections. The agent learned that activating
the shield, which counts as one time step and ends the episode,
is less costly than exploration over more time steps. Expert
knowledge in the form of a large negative reward for the
correction, prevented convergence to this sub-optimal solution.

D. Bake a Cake - Alternative Item

1) Problem Representation: The agent’s goal
is to make and deliver a cake, which consists
of eggs and flour (see Fig. 6a). The actions are
A = {turncw, turnccw, fetch<p>,bake<p>,deliver<p>}.
The bake<p> action takes the bowl with its contents, bakes
it in the oven, and places it on the counter again. Items can
only be baked when they are in the bowl. The state is the
same as in the salad experiment (see Section IV-C), but the
ingredients’ state denotes baked or not. Correct deliveries
are rewarded with r = +10, and incorrect deliveries with
r = −1. Baking the right ingredients is rewarded r = +1.

2) Failure: The wheat flour is no longer available in the
deployment environment (see Fig. 6b), and the agent needs to
learn to use almond flour as an alternative.

agent

tomato
slice

delivery

oven

bowl

wheat
flour

eggs sliced
bread

ham
slice

cheese
slice

almond
flour

1
2

3 4

5 6

7 8

9 10

0

(a) Training environment. Numbers indicate
the agent’s orientations.

agent

tomato
slice

delivery

oven

bowl

eggs sliced
bread

ham
slice

cheese
slice

almond
flour

(b) Deployment environment.

0 100 200 300 400 500
episodes

−5

0

5

10

av
er

ag
e

to
ta

lr
ew

ar
d

shielded
without
500 epsaverage

episode
converged

(c) Rewards with and without shielding.

Fig. 6. Alternative item example: The agent needs to bake a cake by
fetching eggs, wheat flour, the bowl, baking the dough and delivering it
from the counter (light brown) to the delivery. Fig. 6a illustrates the training
environment and Fig. 6b illustrates the deployment environment in which there
is no wheat flour available and the agent needs to replace it with almond flour
as an alternative. Fig. 6c shows the rewards of retraining the policy with and
without the shield to correct the failure.

3) Results: Fig. 6c shows the rewards when retrain-
ing the policy with our generated shield, which replaces
fetch<wheatFlour> with fetch<almondFlour>, and without a
shield. Our policy repair approach learns the task successfully
and converges after 104 episodes on average. Without a shield,
the policy is unable to robustly learn the task or obtain positive
rewards, even when trained for 500 episodes instead of 250.
Our policy repair approach avoids the failure while being more
data-efficient. The incorrect shield, corresponding to OA 13
in Fig. 4 in the supplementary material, refines the action by
fetching a bowl, fetching fresh eggs, and fetching wheat flour.
Similar to the salad experiment, this correction results in an
infinite corrective loop, as the shield calls the failed action.

E. Deliver Coffee - Forbidden Actions

1) Problem Representation: The agent has to pick
up and deliver coffee (see Fig. 7a). The actions are A =
{moveleft,right,up,down,pickup<p>,putDown<p>deliver<p>}.
Picking and placing items on counters is done by moving to
the corresponding tile, e.g., in Fig. 7a, the agent picks up the
coffee by moving up. The state includes the location of the
agent and coffee. Correct delivery is rewarded with r = +1.

2) Failure: There is a carpeted floor tile in the deployment
environment (see Fig. 7b), and the agent fails because it gets
stuck on it. The agent needs to learn to avoid carpeted tiles.

agent

deliverycoffee

(a) Training environment.

delivery

coffee

carpet

agent

(b) Deployment environment.

0 10 20 30
episodes

−0.5

0.0

0.5

average
episode

convergedav
er

ag
e

to
ta

lr
ew

ar
d

shielded
without
penalty
incorrect

(c) Rewards with, without shielding and penalty.

Fig. 7. Forbidden actions example: The agent needs to pickup the coffee from the counter and deliver it at the delivery. Fig. 7a illustrates the training
environment and Fig. 7b illustrates the deployment environment which contains carpeted floor tiles, on which the agent gets stuck, and it needs to avoid
actions that lead it to the carpet. Fig. 7c shows the rewards of retraining the policy with and without the shield to correct the failure, as well as the reward
of a penalty version that required manual intervention and the use of an incorrect shield.

3) Results: Fig. 7c shows the rewards when retraining the
policy with our shield, which removes actions that move
the agent to carpeted floor tiles, without a shield, and with
an incorrect shield. Our policy repair approach learns the
task successfully and converges after 24 episodes on average.
Without a shield, the policy does not learn the task and only
obtains negative rewards. The agent repeatedly ends up in
the carpeted floor tile, since it does not get any additional
penalty reward but only the negative step cost. We modified
the reward function by providing an additional penalty of
r = −1 for moving to carpeted tiles. This change helped the
policy to converge, yet it still requires 25% more episodes
compared to our shielded learning. In addition, it has a
less stable learning curve, which indicates more undesirable
actions during training. The incorrect shield, corresponding to
open OA 7 in Fig. 6 in the supplementary material, corrects
the action by moving the agent one tile down, one right,
one up. The corrective action sequence gets triggered twice
consecutively, as the first correction made the agent move
into the carpet again. The agent learns that with activating the
shield, which counts as one time step, it ends up at the delivery
tile, which is less costly than exploration over multiple steps.

V. COLLECT NON-EXPERT INPUT TO REPAIR POLICIES

Our goal is to see 1) if NEs can understand what caused a
failure and 2) if they can provide rules to the robot to correct
its policy. We use natural language as an intuitive way for
inexperienced users to instruct the robot [32], it allows us to
analyze whether people understand the task, it reduces the risk
of having the interface design as a confounding factor on task
performance, and it can be translated into code [33]. There is
a large body of work that focuses on NE robot programming,
e.g., [34]–[38]. While that is not our focus, we did ask people
to code their solution using the Google Blockly interface [39],
to get an idea how this compares to natural language.

A. Study Design

We iteratively designed our online study using data from 18
participants (5 female, 13 male) between 20–63 years of age
(M = 31.8, SD = 8.86), recruited from Amazon Mechanical
Turk (AMT). All participants had little to no prior experience

with programming (M = 1.94, SD = 0.73; 1 = none, 2 =
beginner, 3 = intermediate, and 4 = advanced) and with robots
(M = 2.33, SD = 0.49; 1 = never seen a robot in media or
real life, to 4 = interact with robots on a regular basis). 15
participants were American, 1 German, 1 Irish, 1 Brazilian.
They were compensated $7USD.

1) Results and Final Design: The final online study uses
a within-subjects (task: salad, cake, coffee) design. For each
task, we asked participants to help the robot using natural
language in two open questions, and then using visual pro-
gramming blocks. There are six combinations in total, and we
counterbalanced with which order participants started.

We refined the task instructions, we added an animation
of the robot getting stuck on the carpet in the coffee task,
because the failure was hard to understand from a static 2D
image. Lastly, we added an introduction page with example
rules: If a door is closed, open the door, and never move out
of the WiFi signal’s range (see Fig. 8).

B. Participants and Procedure

Exclusion of one non-serious submission resulted in a total
of 28 participants recruited through AMT (10 female, 18
male) between 27–57 years of age (M = 38.68, SD = 7.68).
They took 28 minutes on average (SD = 10 minutes) and
were compensated $7USD. They had little to no programming
experience (M = 1.89, SD = 0.92; 1 = none, 2 = beginner,
3 = intermediate, and 4 = advanced). Nine participants had
interacted with a robot before (e.g., vacuum cleaning robots
or office/home robots) and one participant used to work
with assembly line robots. 23 participants were American,
4 Indian, 1 German. Six participants completed vocational
qualification, 8 participants completed secondary education,
11 participants completed bachelor level education, and three
completed master level education.

Participants first completed an introduction phase with the
examples as shown in Fig. 8. Then, for each task, they first
answered the following two open questions: 1. “Why did the
robot fail to fetch the tomato slice in this kitchen?” and 2.
“In this kitchen, what rule can the robot use to avoid this
type of failure and successfully complete this task on future
occasions?”. We asked participants to specify a general ‘rule’

delivery

Wi-Fi closed door

open door

A B C

(a) Door Failure

delivery

Wi-Fi

A B C

!

(b) Wi-Fi Failure

Fig. 8. Two examples of robot failures. In Fig. 8a, the robot fails to pass through a closed door while delivering coffee, since it was trained in an environment
with open doors only. In Fig. 8b, the robot fails because it left the Wi-Fi signal’s range, since it was trained in an environment with different router positions.

that defines what the robot could do to avoid the failure. Then,
we explained to the participants that robots do not understand
natural language really well yet, and we asked them to create
a program that helps the robot to complete the task in the
future using a Blockly interface. Finally, we collected their
demographics and thanked them for their participation.

C. Can Non-Experts Understand Failures?

Two of the authors coded the open anwers (OAs) as
(in)correct, with inter-rater agreement of 94% for the failures
understood, and 98% for the rules. The OAs can be found in
the supplementary material. Most participants understood the
failures correctly (see Fig. 9). 17 people (61%) understood all
three failures correctly, 5 people (18%) understood two failures
correctly, four people (14%) understood one failure correctly,
and two people (7%) did not understand any failure.

For the salad task, 22 participants understood the failure
correctly (79%) and six participants (21%) did not. An ex-
ample of a correctly identified failure is “You failed to fetch
the tomato slice; because there are only whole tomatoes on
the shelf”. For the cake task, 20 participants (71%) correctly
understood the failure, e.g., “It knew to fetch wheat flour
but didn’t understand that almond flour is an acceptable
substitute”. Eight participants (29%) did not understand the
failure correctly. For the coffee task, 23 participants (82%)
identified the failure correctly, e.g., “You failed to move right
because there was a shag carpet on the floor and you became
stuck”, and 5 participants (18%) did not.

D. Can Correct and Incorrect Feedback Be Differentiated?

All three failures could successfully be corrected by the
majority of participants using natural language: 71% of the
participants succeeded in the salad experiment, 61% in the
cake experiment, and 61% in the coffee experiment (see

Salad Cake Coffee0%

25%

50%

75%

100%

U
nd

er
st

oo
d

R
ep

ai
re

d

U
nd

er
st

oo
d

R
ep

ai
re

d

U
nd

er
st

oo
d

R
ep

ai
re

d

Incorrect
Correct

Fig. 9. Percentage correctly identified and repaired failures per experiment.

Fig. 9). However, even participants whose OAs were correct,
struggled to code rules using the visual interface, suggesting
that natural language is more intuitive for NEs.

We analyzed the similarities between OAs to shed light
on the potential to automatically process NE feedback into
shields. We study 1) whether we can distinguish (in)correct
answers, and 2) the similarity between correct OAs.

We pre-processed the OAs by correcting spelling mistakes,
removing upper-case and punctuation, and converted each OA
into a feature vector of token counts considering 1-gram words
using scikit-learn [40]. For each OA, we computed cosine
similarity with the other OAs (a score of 0 indicates no
similarity, and a score of 1 indicates complete similarity), and
grouped similar OAs using agglomerative clustering.

Fig. 10 shows the pair-wise similarity scores between the
computed clusters in each experiment. Generally, we observe
that correct answers clusters have higher similarity to each
other, and the lowest similarity with the incorrect answers.
The average pair-wise similarity score between correct and
incorrect answers was 43%, 27%, and 38% in the salad, cake,
and coffee experiment, respectively, which suggests that we
can differentiate between correct and incorrect OAs. 83% of
OAs were clustered correctly: 52 out of 55 correct answers
and 18 out of 29 incorrect answers. There were one and two
correct answers clustered as incorrect for the salad and coffee
experiment, respectively. No correct answers were clustered
as incorrect for the cake experiment. Three incorrect answers
were clustered as correct for the salad and cake experiment,
and five for the coffee experiment. We found a high average
similarity between correct answers, 65%, 60%, and 60%,
for the salad, cake, and coffee experiment, respectively. The
incorrect OAs had lower average similarity, 30%, 25%, and
39% for the salad, cake, and coffee experiment, respectively.
This suggests that correct answers tend to be consistent across
people and incorrect answers can be identified based on their
dissimilarity with correct answers.

Within the correct answers clusters, dissimilarities mainly
stem from the way participants describe actions, e.g., “slice
the tomato” versus “if the tomato is not cut, cut a slice” or
e.g., “fetch almond flour” versus “use an alternative flour”.
The two incorrect clusters for the coffee experiment stem from
people who copied parts of the instructions as their answer.

0 1 2 3

0
1

2
3

1 0.59 0.4 0.42

0.59 1 0.64 0.34

0.4 0.64 1 0.23

0.42 0.34 0.23 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cluster +

+

+

+

-

+ + -

(a) Salad experiment

cluster 0 1 2 3

0
1

2
3

1 0.56 0.38 0.1

0.56 1 0.5 0.24

0.38 0.5 1 0.19

0.1 0.24 0.19 1

+

+

+

+

-

+ + -

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Cake experiment

0 1 2 3

0
1

2
3

1 0.41 0.43 0.19

0.41 1 0.33 0.22

0.43 0.33 1 0.21

0.19 0.22 0.21 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cluster +

+

+

-
-

+ --

(c) Coffee experiment

Fig. 10. Similarity scores of the obtained open-answer clusters in our three experiments. Similarity values 0 and 1 denote no and full similarity, respectively.
Cluster indices with a + correspond to answers clustered as correct and indices with a − correspond to answers clustered as incorrect.

VI. DISCUSSION AND CONCLUSIONS

This work is a first step towards a full NE policy repair
pipeline and validates for the first time that shields can be used
to repair high-level policies after failures, so that robots can
continue their task without constant supervision, even if the en-
vironment changes. The experiments show that simple shields
can drastically improve the retraining by converging faster and
thus requiring less training data. Shielded exploration learns
more robustly, avoiding undesired outcomes. While expert
intervention (e.g., assigning explicit rewards) helped to retrain
policies, our shielded approach was successful without the
need for such intervention. While these results are promising,
we acknowledge important avenues for future work.

A. Dealing with Inaccurate Feedback

The majority of NEs could successfully understand the
failure (77% on average) and suggest policy repairs (67% on
average), indicating that methods such as majority voting can
be used to select correct feedback. 83% of OAs were correctly
clustered, with correct answers generally being highly similar
to each other but not to incorrect answers. While these
results highlight the potential to automate shield generation,
similarity clustering only suggests which answers are likely to
be (in)correct. More work is needed to automatically filter out
inaccurate feedback [41]. For example, multiple NEs can be
asked to judge whether corrections are sensical before sending
them to the robot [42], or answers could be filtered by whether
they contain actions not currently available to the robot, which
we observed in our results, to see if these actions are non-
sensical or if they should be added to the robot’s action set.

Robots need to be able to automatically detect inaccurate
feedback to query additional help. In the salad and cake
experiments, the incorrect shields resulted in an infinite loop
of corrections. This can happen for learning-based robots that
interact with the environment through sparse rewards while
favoring shorter policies. To detect such behaviors of incorrect
shields, one can incorporate performance measures to evaluate
how effective the corrections are. For instance, one may keep
track of the number of consecutive shield corrections, as this
indicates that the agent repeatedly visited undesired states.

In the coffee experiment, the incorrect shield’s policy con-
verged the fastest with a higher reward, but it only holds for
this specific layout, e.g., a larger environment might result in
the agent moving further away from its goal. The correct shield
generally avoids carpets in any environment layout. NEs who
see just one failure instance, might provide instance-specific
corrections. One solution could be to run a benchmark suite of
scenarios as a sanity check for how well the shield generalizes.

B. Broader Applicability of our Approach

Our approach is applicable to sequential decision-making
robots that perform common tasks, e.g., a robot in a table-
setting task might wrongly place objects. NEs can specify
rules to define desired relations between the objects over time
(e.g., always place the fork left of the plate) to ensure the
correct target task configuration. Robots can use on-the-fly NE
feedback to synthesize controllers to adhere to such norms.

When testing the approach with real robots, we can leverage
sensor fusion to provide richer representation of the environ-
ment and failure in the robot’s queries and test what infor-
mation representations help NEs repair the robot’s policies
effectively. Our approach works for lower-level skills, if they
can be decomposed into higher-level actions. For example, it
is difficult for NEs to suggest corrections for a control input
trajectory to fetch a slice of bread. However, decomposing this
trajectory into actions, such as ‘move gripper to bread’ and
‘close gripper’, can be semantically interpreted by NEs. Future
work needs to investigate the trade-off between correcting
lower-level skills and simplicity for NEs.

We implemented a proof-of-concept using tabular Q-
learning, but we want to test our approach with more complex
learning algorithms and policies outside RL. Finally, our
approach can complement work on failure explainability [43],
e.g., to use OAs for explaining failures to users.

In this work, we showed that shields can be used to
repair failures of learning-based robots and NEs are able
to provide corrections from which such shields could be
generated. Overall, this paper showcases the potential for
multidisciplinary research bringing together approaches from
human-robot interaction, learning, and formal methods [44].

REFERENCES

[1] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: lessons we
have learned,” The Int. Journal of Robotics Research, vol. 40, no. 4-5,
pp. 698–721, 2021.

[2] E. Guizzo and E. Ackerman, “The hard lessons of DARPA’s robotics
challenge [news],” IEEE Spectrum, vol. 52, no. 8, pp. 11–13, 2015.

[3] D. Hadfield-Menell, S. Milli, P. Abbeel, S. Russell, and A. Dragan,
“Inverse reward design,” arXiv preprint arXiv:1711.02827, 2017.

[4] R. Shah, C. Wild, S. H. Wang, N. Alex, B. Houghton, W. Guss,
S. Mohanty, A. Kanervisto, S. Milani, N. Topin et al., “The MineRL
BASALT competition on learning from human feedback,” arXiv preprint
arXiv:2107.01969, 2021.

[5] D. Porfirio, A. Sauppé, A. Albarghouthi, and B. Mutlu, “Authoring and
verifying human-robot interactions,” in Proc. of the ACM Symposium on
User Interface Software and Technology, 2018, pp. 75–86.

[6] E. Senft, M. Hagenow, K. Welsh, R. Radwin, M. Zinn, M. Gleicher, and
B. Mutlu, “Task-level authoring for remote robot teleoperation,” arXiv
preprint arXiv:2109.02301, 2021.

[7] N. Wilde, A. Blidaru, S. L. Smith, and D. Kulić, “Improving user
specifications for robot behavior through active preference learning:
Framework and evaluation,” The Int. Journal of Robotics Research,
vol. 39, no. 6, pp. 651–667, 2020.

[8] A. L. Thomaz and C. Breazeal, “Teachable robots: Understanding human
teaching behavior to build more effective robot learners,” Artificial
Intelligence, vol. 172, no. 6-7, pp. 716–737, 2008.

[9] ——, “Reinforcement learning with human teachers: Evidence of feed-
back and guidance with implications for learning performance,” in Aaai,
vol. 6, 2006, pp. 1000–1005.

[10] T. Cederborg, I. Grover, C. L. Isbell, and A. L. Thomaz, “Policy shaping
with human teachers,” in Proc. of the Int. Joint Conf. on Artificial
Intelligence, 2015.

[11] S. Griffith, K. Subramanian, J. Scholz, C. L. Isbell, and A. L. Thomaz,
“Policy shaping: Integrating human feedback with reinforcement learn-
ing,” in Advances in neural information processing systems, 2013, pp.
2625–2633.

[12] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and autonomous systems,
vol. 57, no. 5, pp. 469–483, 2009.

[13] S. Chernova and A. L. Thomaz, “Robot learning from human teachers,”
Synthesis Lectures on Artificial Intelligence and Machine Learning,
vol. 8, no. 3, pp. 1–121, 2014.

[14] A. L. Thomaz and C. Breazeal, “Asymmetric interpretations of positive
and negative human feedback for a social learning agent,” in Proc. of the
IEEE Int. Symposium on Robot and Human Interactive Communication.
IEEE, 2007, pp. 720–725.

[15] W. B. Knox, P. Stone, and C. Breazeal, “Training a robot via human
feedback: A case study,” in Int. Conf. on Social Robotics. Springer,
2013, pp. 460–470.

[16] H. B. Suay and S. Chernova, “Effect of human guidance and state space
size on interactive reinforcement learning,” in Proc. of the IEEE Int.
Symp. on Robot and Human Interactive Communication, 2011, pp. 1–6.

[17] E. Senft, P. Baxter, J. Kennedy, S. Lemaignan, and T. Belpaeme,
“Supervised autonomy for online learning in human-robot interaction,”
Pattern Recognition Letters, vol. 99, pp. 77–86, 2017.

[18] D. Koert, M. Kircher, V. Salikutluk, C. D’Eramo, and J. Peters, “Multi-
channel interactive reinforcement learning for sequential tasks,” Fron-
tiers in Robotics and AI, vol. 7, 2020.

[19] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Int. Conf. on Machine Learning, 2017, pp. 22–31.

[20] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforce-
ment learning,” Journal of Machine Learning Research, vol. 16, no. 1,
pp. 1437–1480, 2015.

[21] A. Wachi and Y. Sui, “Safe reinforcement learning in constrained
Markov decision processes,” in Int. Conf. on Machine Learning, 2020,
pp. 9797–9806.

[22] H. Kress-Gazit, K. Eder, G. Hoffman, H. Admoni, B. Argall,
R. Ehlers, C. Heckman, N. Jansen, R. Knepper, and J. Křetı́nskỳ,
“Formalizing and guaranteeing human-robot interaction,” arXiv preprint
arXiv:2006.16732, 2020.

[23] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[24] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Transactions on Robotics,
vol. 25, no. 6, pp. 1370–1381, 2009.

[25] M. Hasanbeig, A. Abate, and D. Kroening, “Logically-constrained
reinforcement learning,” arXiv preprint arXiv:1801.08099, 2018.

[26] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith,
“Teaching multiple tasks to an RL agent using LTL,” in Proc. of the
Int. Conf. on Autonomous Agents and MultiAgent Systems, 2018, pp.
452–461.

[27] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Int. Conf. on
Artificial Intelligence, 2018.

[28] N. Jansen, B. Könighofer, S. Junges, and R. Bloem, “Shielded decision-
making in MDPs,” arXiv preprint arXiv:1807.06096, 2018.

[29] B. Könighofer, J. Rudolf, A. Palmisano, M. Tappler, and R. Bloem,
“Online shielding for stochastic systems,” in NASA Formal Methods
Symposium, 2021, pp. 231–248.

[30] S. A. Raza and M.-A. Williams, “Human feedback as action as-
signment in interactive reinforcement learning,” ACM Transactions on
Autonomous and Adaptive Systems, vol. 14, no. 4, pp. 1–24, 2020.

[31] R. E. Wang, S. A. Wu, J. A. Evans, J. B. Tenenbaum, D. C. Parkes, and
M. Kleiman-Weiner, “Too many cooks: Coordinating multi-agent col-
laboration through inverse planning,” arXiv preprint arXiv:2003.11778,
2020.

[32] J. Y. Chai, M. Cakmak, C. Sidner, and J. Lupp, “Teaching robots new
tasks through natural interaction,” in Interactive Task Learning: Agents,
Robots, and Humans Acquiring New Tasks through Natural Interactions,
Strüngmann Forum Reports, J. Lupp, series editor, vol. 26, 2017.

[33] W. Zaremba, G. Brockman, and OpenAI. (2021) OpenAI codex.
[Online]. Available: https://openai.com/blog/openai-codex/

[34] E. M. Orendt, M. Fichtner, and D. Henrich, “Robot programming by
non-experts: Intuitiveness and robustness of one-shot robot program-
ming,” in Proc. of the IEEE Int. Symposium on Robot and Human
Interactive Communication, 2016, pp. 192–199.

[35] S. Alexandrova, Z. Tatlock, and M. Cakmak, “Roboflow: A flow-based
visual programming language for mobile manipulation tasks,” in Proc. of
the IEEE Int. Conf. on Robotics and Automation, 2015, pp. 5537–5544.

[36] S. Elliott, R. Toris, and M. Cakmak, “Efficient programming of manipu-
lation tasks by demonstration and adaptation,” in Proc. of the IEEE Int.
Symposium on Robot and Human Interactive Communication. IEEE,
2017, pp. 1146–1153.

[37] M. Stenmark, M. Haage, and E. A. Topp, “Simplified programming of
re-usable skills on a safe industrial robot: Prototype and evaluation,”
in Proceedings of the 2017 ACM/IEEE International Conference on
Human-Robot Interaction, 2017, pp. 463–472.

[38] S. van Waveren, E. J. Carter, O. Örnberg, and I. Leite, “Exploring
non-expert robot programming through crowdsourcing,” Frontiers in
Robotics and AI, p. 242, 2021.

[39] Google. (2021) Blockly. [Online]. Available: https://developers.google.
com/blockly

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[41] T. A. K. Faulkner, E. S. Short, and A. L. Thomaz, “Interactive rein-
forcement learning with inaccurate feedback,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation, 2020, pp. 7498–7504.

[42] I. Leite, A. Pereira, A. Funkhouser, B. Li, and J. F. Lehman, “Semi-
situated learning of verbal and nonverbal content for repeated human-
robot interaction,” in Proceedings of the 18th ACM International Con-
ference on Multimodal Interaction, 2016, pp. 13–20.

[43] D. Das, S. Banerjee, and S. Chernova, “Explainable ai for robot failures:
Generating explanations that improve user assistance in fault recovery,”
arXiv preprint arXiv:2101.01625, 2021.

[44] D. Kragic and Y. Sandamirskaya, “Effective and natural human-robot
interaction requires multidisciplinary research,” Science Robotics, vol. 6,
no. 58, p. eabl7022, 2021.

https://openai.com/blog/openai-codex/
https://developers.google.com/blockly
https://developers.google.com/blockly

	Introduction
	Related Work
	Learning from NE Feedback
	Enforcing Desired Robot Behaviors

	Correcting Failures of Policies
	Training the Reinforcement Learning System
	Query NEs to Correct Failures after Deployment
	Generating Shields to Correct Failures
	Algorithm

	Evaluation of Policy Correction
	Reinforcement Learning Setup
	Analysis Plan
	Make a Salad - Action Refinement
	Problem Representation
	Failure
	Results

	Bake a Cake - Alternative Item
	Problem Representation
	Failure
	Results

	Deliver Coffee - Forbidden Actions
	Problem Representation
	Failure
	Results

	Collect Non-expert Input to Repair Policies
	Study Design
	Results and Final Design

	Participants and Procedure
	Can Non-Experts Understand Failures?
	Can Correct and Incorrect Feedback Be Differentiated?

	Discussion and Conclusions
	Dealing with Inaccurate Feedback
	Broader Applicability of our Approach

	References

