
Leveraging Non-Experts and Formal Methods to
Automatically Correct Robot Failures

Sanne van Waveren
KTH Royal Institute of Technology

Stockholm, Sweden
sannevw@kth.se

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Pre-print of accepted manuscript.
Presented at the 17th ACM/IEEE Int. Conf. on Human-Robot Interaction (HRI), 2022.

Abstract—State-of-the-art robots are not yet fully equipped
to automatically correct their policy when they encounter new
situations during deployment. We argue that in common everyday
robot tasks, failures may be resolved by knowledge that non-
experts could provide. Our research aims to integrate elements
of formal synthesis approaches into computational human-robot
interaction to develop verifiable robots that can automatically
correct their policy using non-expert feedback on the fly. Prelim-
inary results from two online studies show that non-experts can
indeed correct failures and that robots can use the feedback to
automatically synthesize correction mechanisms to avoid failures.

Index Terms—robot failure, policy repair, non-experts, shielded
reinforcement learning

I. INTRODUCTION

When we deploy robots in the real world, automatic failure
recovery is needed to succeed in new situations. This typically
requires costly expert intervention, or substantial time or data
to retrain the policy. Yet, certain failures, especially when
they happen in everyday contexts, can also be understood and
corrected by people who do not necessarily have technical
expertise, i.e., non-experts (NEs), see Fig. 1a. Our research
leverages NEs to automatically correct high-level robot actions
on the fly in sequential decision-making tasks. We synthesize
repair mechanisms from NE feedback, which can circumvent
delays when experts are not available, let end-users tune their
robot to match their personal preferences, and exploit diverse
feedback from a large number of individuals.

In prior work, NEs have successfully taught robots cooking
[1]–[4], navigation [5], [6], and object sorting tasks [4], [7].
Often, the teacher was required to be present throughout
the entire training process. However, during deployment it
becomes impractical to require NEs to constantly monitor
the robot [8]. This inspired us to investigate: How NEs can
correct robots only after a robot failure occurred?

Existing approaches typically also only consider feedback
pre-deployment. If we want to correct robot policies or plans
on the fly, automated corrections and formal guarantees on
the system’s behavior become crucial. Formal synthesis ap-
proaches can automatically synthesize correction mechanisms,
referred to as shields [9], [10], from a given specification to
enforce that the robot’s behaviors always satisfy the spec-
ification. To date, such formal guarantees focus primarily
on safety aspects, and have received less attention in HRI
approaches [11], e.g., to correct robot failures and define

agent

cutboard lettuce
slice

delivery

plate

tomato
slice agent

cutboard lettuce
slice

delivery tomato

plate

Training environment Deployment environment
(a) Example failure

Non-expert

query for
help

shield to
correct failure

feedback to correct failure

Agent Formal synthesis

A

B

C

(b) Framework overview

Fig. 1. (a) The robot needs to make a salad with a tomato slice, but in the
deployment environment, it can only find a whole tomato. NEs can suggest to
resolve the failure by instructing the robot to cut the tomato. (b) Framework
to automatically correct robot failures using NEs and formal synthesis.

appropriate alternatives when the original policy fails. This
raises our second research question: How can we bring
formal synthesis approaches into HRI to develop verifiable
robots that automatically correct their policy using NEs?

Fig. 1b illustrates our approach, with three main compo-
nents: a) the robot’s query to request NE feedback, b) the
feedback to correct failures, and c) the shield generated from
this feedback and applied to the robot’s behavior. In the next
sections, we discuss our efforts to realize our approach.

II. NON-EXPERT-GENERATED ROBOT SPECIFICATIONS

We focus primarily on NE feedback that can be translated
into Temporal Logic (TL) specifications for verifying system
behaviors [12], [13]. Due to their resemblance to natural
language, TLs balance the trade-off between rigorousness and
simplicity for NEs. While existing approaches usually require
experts to manually define specifications or to turn them into
shields, our work explored if NEs can author specifications
that are rich enough to be used in formal synthesis while
structured enough to be useful for robots to automatically
synthesize specifications. In addition to rigor and simplicity,
time-efficiency is important; NEs should be able to help the
robot without having to go through substantial training.



Our first online study investigated whether NEs can create
specifications in the form of simple robot programs for a
navigation and pick-and-place task, with as little as one minute
of instructions [14]. In both tasks, the robot may fail at some
point due to missing rules. Participants were asked to provide
these rules in a block-based programming interface. In the nav-
igation task, a cat may randomly appear that would block the
robot’s way and the robot might get stuck. Participants could
suggest if the cat is blocking the way, make the cat go away.
In the pick-and-place task, the robot was tasked to only stack
pink cylinders, not other colored cylinders. Participants could
specify an alternative action: “if a cylinder is not pink, place it
in the bin”. Initial results suggested that people were generally
able to successfully write specifications for the robot to handle
such exceptions. However, when NEs had to use a larger
number of programming statements (i.e., use more advanced
programming blocks), task load increased and task usability
decreased. Our second work explored natural language, which
is intuitive for NEs [15] and machine-translatable [16], and
reduces the risk of having the visual programming interface
as a confounding factor on task performance.

III. FORMALLY ENFORCING ROBOT BEHAVIORS

While crucial for robot safety and trustworthiness, formal
verification has received less attention in HRI [11]. Formal
methods-based approaches have been primarily used to enforce
safe robot behaviors, e.g., constrained RL approaches [17]–
[19], TL-based approaches [20]–[22], or shielded RL [9],
[23], [24]. To date, shields have been used to enforce safety
properties, but not to repair policies in case of failures.

In our second online study, we extended shielding to repair
policies and investigated whether NE feedback can be used
to automatically synthesize shields to repair failures of an RL
agent [25]. We assume that the robot can detect when a failure
occurs, but might not know the cause. NEs would suggest
alternative actions or items, or define forbidden actions, in
three cooking tasks. Participants were instructed to provide
natural language feedback to the simulated robot using TL
operators, e.g., always, never (i.e., always not) and conditional
statements, e.g., if X then Y (i.e., implies). For brevity, we
elaborate on the action refinement for failures that can be
corrected by proposing alternative actions instead of executing
the failed action aF . The other two shields are synthesized
similarly. For example, in Fig. 1a, NEs may suggest to chop
the tomato first. This feedback indicates that the original action
fetchtomatoSlice will result in a failure state. We denote a set
of desired states Sdesired that does not include such failure
states. If the agent were to leave Sdesired, we correct the
chosen action a with the corrective actions as suggested by
the NE. The function c(s, a) returns corrective action(s), e.g.,
fetchtomato and choptomato instead of fetchtomatoSlice. The
refine shield minimally interferes with the learning by only
correction actions a ∈ A if they lead to failures:

refines(a) =

{
a, if δ(s, a) ∈ Sdesired

c(s, a) ∈ A, if δ(s, a) 6∈ Sdesired

, (1)

average
episode

converged

0 20 40 60 80 100
episodes

−2

−1

0

av
er

ag
e

to
ta

lr
ew

ar
d

shielded
without

Fig. 2. Average total reward with and without NE-generated shielding.

where δ(s, a) obtains the next state when applying action a
in state s. Retraining with our shield resulted in an average of
30% faster learning compared to retraining without a shield
(see Fig. 2). In this work, we showed for all three cooking tasks
that we can synthesize shields from NE feedback that correct
failures of robot policies while increasing data-efficiency and
reducing the need for experts. Our experiments also show that
our shields ensure that the robot does not enter failure states,
whereas non-shielded learning is still prone to failures.

IV. FUTURE WORK

Our work shows that 1) NEs can create simple robot
programs, and 2) we can successfully generate shields from
NE feedback that automatically correct the robot’s actions. Our
studies show the potential of combining formal synthesis with
HRI to correct robot failures, specifically after deployment.

So far, we have not yet conducted a fine-grained analysis
of the type of information needed to convey the robot failure.
Diagnosis information and action recommendations can help
remote operators to resolve failures [8]. For action or item
refinement, NEs need to know what alternatives are available.
For example, in Fig. 1a, NEs need to know that chop and
tomato are an available action and item, respectively. Diagno-
sis information may include robot’s dynamics, e.g., a robot that
is stuck on carpet or unable to lift a heavy object. Currently,
we investigate which information, e.g., velocity, exerted forces,
intended motion [26], or context [27], robots need to provide
so that NEs can identify and correct failures.

We will validate our approach in a real-world kitchen task
with a manipulator robot that is tasked to set a dinner table.
We want to explore if NEs can specify desired robot high-
level pick-and-place (e.g., ‘move object to’ and ‘close gripper’)
behavior using an object-centric TL. This TL defines spatial
(e.g., left, right, above, below, close) and temporal (e.g.,
always, eventually, first) relations between the objects, e.g.,
the fork should always be placed left of the plate. From the
TL specifications, we synthesize the robot controller. The TL
tells us if/how much we satisfy these specifications. In case
of violation (i.e., robot failure), NEs can correct the robot’s
behavior on the fly by refining existing or providing additional
specifications. We will artificially induce failures, e.g., we
occupy the space left of the plate with another object, after
which we query remote NEs to correct the specification to
include additional constraints or exceptions, e.g., ‘if there is
no space left of the plate, place the fork on the right instead’.



REFERENCES

[1] A. L. Thomaz and C. Breazeal, “Reinforcement learning with human
teachers: Evidence of feedback and guidance with implications for
learning performance,” in AAAI, vol. 6, 2006, pp. 1000–1005.

[2] ——, “Teachable robots: Understanding human teaching behavior to
build more effective robot learners,” Artificial Intelligence, vol. 172, no.
6-7, pp. 716–737, 2008.

[3] E. Senft, P. Baxter, J. Kennedy, S. Lemaignan, and T. Belpaeme,
“Supervised autonomy for online learning in human-robot interaction,”
Pattern Recognition Letters, vol. 99, pp. 77–86, 2017.

[4] D. Koert, M. Kircher, V. Salikutluk, C. D’Eramo, and J. Peters, “Multi-
channel interactive reinforcement learning for sequential tasks,” Fron-
tiers in Robotics and AI, vol. 7, 2020.

[5] W. B. Knox, C. Breazeal, and P. Stone, “Learning from feedback on
actions past and intended,” in in Proc. of the Int. Conf. on Human-Robot
Interaction, Late-Breaking Reports Session (HRI 2012). Citeseer, 2012.

[6] N. Wilde, A. Blidaru, S. L. Smith, and D. Kulić, “Improving user
specifications for robot behavior through active preference learning:
Framework and evaluation,” The Int. Journal of Robotics Research,
vol. 39, no. 6, pp. 651–667, 2020.

[7] H. B. Suay and S. Chernova, “Effect of human guidance and state space
size on interactive reinforcement learning,” in Proc. of the IEEE Int.
Symposium on Robot and Human Interactive Communication, 2011, pp.
1–6.

[8] S. Banerjee, M. Gombolay, and S. Chernova, “A tale of two suggestions:
Action and diagnosis recommendations for responding to robot failure,”
in 2020 29th IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN). IEEE, 2020, pp. 398–405.

[9] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Int. Conf. on
Artificial Intelligence, 2018.

[10] H. Hu, K. Nakamura, and J. F. Fisac, “SHARP: Shielding-aware robust
planning for safe and efficient human-robot interaction,” arXiv preprint
arXiv:2110.00843, 2021.

[11] H. Kress-Gazit, K. Eder, G. Hoffman, H. Admoni, B. Argall,
R. Ehlers, C. Heckman, N. Jansen, R. Knepper, and J. Křetı́nskỳ,
“Formalizing and guaranteeing human-robot interaction,” arXiv preprint
arXiv:2006.16732, 2020.

[12] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[13] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Transactions on Robotics,
vol. 25, no. 6, pp. 1370–1381, 2009.

[14] S. van Waveren, E. J. Carter, O. Örnberg, and I. Leite, “Exploring
non-expert robot programming through crowdsourcing,” Frontiers in
Robotics and AI, p. 242, 2021.

[15] J. Y. Chai, M. Cakmak, C. Sidner, and J. Lupp, “Teaching robots new
tasks through natural interaction,” in Interactive Task Learning: Agents,
Robots, and Humans Acquiring New Tasks through Natural Interactions,
Strüngmann Forum Reports, J. Lupp, series editor, vol. 26, 2017.

[16] W. Zaremba, G. Brockman, and OpenAI. (2021) OpenAI codex.
[Online]. Available: https://openai.com/blog/openai-codex/

[17] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Int. Conf. on Machine Learning, 2017, pp. 22–31.

[18] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforce-
ment learning,” Journal of Machine Learning Research, vol. 16, no. 1,
pp. 1437–1480, 2015.

[19] A. Wachi and Y. Sui, “Safe reinforcement learning in constrained markov
decision processes,” in Int. Conf. on Machine Learning, 2020, pp. 9797–
9806.

[20] D. Porfirio, A. Sauppé, A. Albarghouthi, and B. Mutlu, “Authoring and
verifying human-robot interactions,” in Proc. of the ACM Symposium on
User Interface Software and Technology, 2018, pp. 75–86.

[21] M. Hasanbeig, A. Abate, and D. Kroening, “Logically-constrained
reinforcement learning,” arXiv preprint arXiv:1801.08099, 2018.

[22] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith,
“Teaching multiple tasks to an RL agent using LTL,” in Proc. of the
Int. Conf. on Autonomous Agents and MultiAgent Systems, 2018, pp.
452–461.

[23] N. Jansen, B. Könighofer, S. Junges, and R. Bloem, “Shielded decision-
making in MDPs,” arXiv preprint arXiv:1807.06096, 2018.

[24] B. Könighofer, J. Rudolf, A. Palmisano, M. Tappler, and R. Bloem,
“Online shielding for stochastic systems,” in NASA Formal Methods
Symposium, 2021, pp. 231–248.

[25] S. van Waveren, C. Pek, J. Tumova, and I. Leite, “Correct me if I’m
wrong: Using non-experts to repair reinforcement learning policies,” in
Proc. of the 2022 ACM/IEEE Int. Conf. on Human-Robot Interaction,
2022.

[26] M. Kwon, S. H. Huang, and A. D. Dragan, “Expressing robot incapabil-
ity,” in Proc. of the ACM/IEEE Int. Conf. on Human-Robot Interaction,
2018, pp. 87–95.

[27] D. Das, S. Banerjee, and S. Chernova, “Explainable AI for robot failures:
Generating explanations that improve user assistance in fault recovery,”
in Proceedings of the 2021 ACM/IEEE International Conference on
Human-Robot Interaction, 2021, pp. 351–360.


